新闻中心

您现在的位置:首页 >新闻中心 > 行业动态

新能源快速增长使电网迫切需要加强调节能力

发布时间:2020-10-20 浏览数:227

新能源的快速增长给电力系统储能发展带来了机遇。目前,我国风电、光伏装机容量均稳居世界首位,截至2019年底,我国新能源装机规模达到4.1亿千瓦,同比增长16%,是世界上新能源并网容量大的国家,新能源装机已成为我国第二大电源。从国网装机增长的情况来看,我国目前新能源总装机比例达到了20%,这只是全国平均数,某些局部地区新能源发电渗透率甚至达到30%~40%,对电网安全稳定运行的影响日益突出。

image.png

新能源发展进入了新的阶段。过去,由于新能源消纳矛盾突出,弃风、弃光现象较为严重,新能源利用效率不高,但如今新能源利用率已达到95%以上,其发展的主要矛盾已从本身的经济性问题转向由其带来的系统安全性问题。

我国新能源资源与负荷中心呈逆向分布。我国西部、北部地区拥有80%以上的陆地风能、60%以上的太阳能,而全国70%的负荷集中在中、东部地区,新能源资源远离负荷中心,必须借助大电网,构建大市场,从而在全国范围内消纳新能源,这对于电网的长距离输送是一个考验。

同时,新能源高比例接入电网后,增加了电网调峰、调频的压力。新能源大规模的并网运行,使供需双侧都呈现随机波动的特性,常规电源的出力不仅要跟随负荷变化,还要平衡新能源的出力波动,既加大了常规电源的调节压力,也增加了电网的平衡难度。在北方某省,由于光伏不稳定的出力特性,使得该省净负荷呈“鸭子”曲线,中午腰荷甚至低于夜间,常规电源机组需要在中午压低出力,增加了电网调峰的难度。

另一方面,新能源的大规模接入也降低了系统的抗干扰能力,在送端系统,风电大出力时,系统频率调节能力显著下降。以西北电网为例,仿真结果显示,在6800万千瓦负荷水平下,损失350万的千瓦功率来看,若网内无风电,频率下跌0.65赫兹;若风电出力1200万千瓦,频率下跌0.95赫兹,比无风电时增加0.3赫兹。随着未来风机和新能源装机规模的进一步扩大,当西北风电规模达到1亿千瓦时,系统抗干扰能力调频能力将进一步降低。

有关测算显示,我国新能源装机到2035年将超过煤电成为全国最大电源,煤电与新能源发电量的占比将在2050年出现反转。预计2035年,风、光装机规模分别达到7亿、6.5亿千瓦,全国风电、太阳能日功率波动预计分别达2亿和4亿千瓦左右,这将超出灵活电源的调节能力,此时,电网迫切需要重新构建调峰体系,以应对新能源5亿千瓦左右的日功率波动。

转型的大势不可逆,但转型是否会增加安全风险?这一问题如同一把达摩克利斯之剑,时时悬在电力行业的头顶。

受限于资源禀赋的约束,我国电力系统灵活性资源十分有限。常规的火电机组调节深度一般在50%左右,经过灵活性改造的火电机组调节深度大约可以达到60%乃至70%,但从“十三五”期间火电机组灵活性改造的进展来看,实际情况远远滞后于规划目标,而其他的灵活性资源如气电价格昂贵且资源稀缺,抽水蓄能的建设受限于地势条件。基于以上分析,电化学储能必将在我国未来电力系统中扮演重要的角色。

国电中星是专业的电力测试设备厂家,密切关注电力以及新能源等相关行业的发展与动态,了解更多访问国电中星官网:www.gdzxdl.com